Skip Navigation
Skip to contents

JMD : Journal of Movement Disorders


Author index

Page Path
HOME > Browse Articles > Author index
Ranjith Jayanthakumar 1 Article
Myoclonus-Ataxia Syndrome Associated with COVID-19
Kuldeep Shetty, Atul Manchakrao Jadhav, Ranjith Jayanthakumar, Seema Jamwal, Tejaswini Shanubhogue, Mallepalli Prabhakar Reddy, Gopal Krishna Dash, Radhika Manohar, Vivek Jacob Philip, Vikram Huded
J Mov Disord. 2021;14(2):153-156.   Published online April 6, 2021
  • 8,087 View
  • 192 Download
  • 9 Web of Science
  • 9 Crossref
AbstractAbstract PDFSupplementary Material
Neurological manifestations of coronavirus disease (COVID-19) have increasingly been reported since the onset of the pandemic. Herein, we report a relatively new presentation. A patient in the convalescence period following a febrile illness with lower respiratory tract infection (fever, myalgia, nonproductive cough) presented with generalized disabling myoclonus, which is phenotypically suggestive of brainstem origin, along with additional truncal cerebellar ataxia. His neurology work-ups, such as brain MRI, electroencephalography, serum autoimmune and paraneoplastic antibody testing, were normal. His CT chest scan revealed right lower lung infiltrates, and serological and other laboratory testing did not show evidence of active infection. COVID-19 titers turned out to be strongly positive, suggestive of post-COVID-19 lung sequelae. He responded partially to antimyoclonic drugs and fully to a course of steroids, suggesting a para- or postinfectious immune-mediated pathophysiology. Myoclonusataxia syndrome appears to be a neurological manifestation of COVID-19 infection, and knowledge regarding this phenomenon should be increased among clinicians for better patient care in a pandemic situation.


Citations to this article as recorded by  
  • Opsoclonus Myoclonus Ataxia Syndrome Due to SARS-CoV-2
    Josef Finsterer, Fulvio A. Scorza
    Neuro-Ophthalmology.2023; 47(1): 1.     CrossRef
  • Myoclonus in patients with COVID‐19: Findings of autoantibodies against brain structures in cerebrospinal fluid
    Isa Lindqvist, Janet L. Cunningham, Jan Mulder, Amalia Feresiadou, Elham Rostami, Johan Virhammar, Eva Kumlien
    European Journal of Neurology.2023; 30(10): 3142.     CrossRef
  • Temporal Changes in Brain Perfusion in a Patient with Myoclonus and Ataxia Syndrome Associated with COVID-19
    Kenta Osawa, Atsuhiko Sugiyama, Akiyuki Uzawa, Shigeki Hirano, Tatsuya Yamamoto, Masahiko Nezu, Nobuyuki Araki, Hiroki Kano, Satoshi Kuwabara
    Internal Medicine.2022; 61(7): 1071.     CrossRef
  • Post‐infectious cerebellar ataxia following COVID‐19 in a patient with epilepsy
    Sidhartha Chattopadhyay, Judhajit Sengupta, Sagar Basu
    Clinical and Experimental Neuroimmunology.2022; 13(4): 323.     CrossRef
  • Persistent neurological manifestations in long COVID-19 syndrome: A systematic review and meta-analysis
    Rizaldy Taslim Pinzon, Vincent Ongko Wijaya, Abraham Al Jody, Patrick Nalla Nunsio, Ranbebasa Bijak Buana
    Journal of Infection and Public Health.2022; 15(8): 856.     CrossRef
  • Anti-neuronal antibodies against brainstem antigens are associated with COVID-19
    Guglielmo Lucchese, Antje Vogelgesang, Fabian Boesl, Dina Raafat, Silva Holtfreter, Barbara M. Bröker, Angela Stufano, Robert Fleischmann, Harald Prüss, Christiana Franke, Agnes Flöel
    eBioMedicine.2022; 83: 104211.     CrossRef
  • Post–COVID‐19 Myoclonus–Ataxia Syndrome Responsive to Intravenous Immunoglobulins
    Massimiliano Godani, Alessandro Beronio, Giuseppe Lanza
    Movement Disorders Clinical Practice.2022;[Epub]     CrossRef
  • Spectrum of de novo movement disorders in the setting of COVID-19 infection: Part 2: Hyperkinetic movement disorders
    Mitesh Chandarana, Heli Shah, Soaham Desai
    Annals of Movement Disorders.2022; 5(1): 23.     CrossRef
  • Anti-GAD associated post-infectious cerebellitis after COVID-19 infection
    Ahmed Serkan Emekli, Asuman Parlak, Nejla Yılmaz Göcen, Murat Kürtüncü
    Neurological Sciences.2021; 42(10): 3995.     CrossRef

JMD : Journal of Movement Disorders Twitter