Skip Navigation
Skip to contents

JMD : Journal of Movement Disorders


Author index

Page Path
HOME > Browse Articles > Author index
Yae Ji Kim 1 Article
Potential Link Between Cognition and Motor Reserve in Patients With Parkinson’s Disease
Seok Jong Chung, Yae Ji Kim, Yun Joong Kim, Hye Sun Lee, Mijin Yun, Phil Hyu Lee, Yong Jeong, Young H. Sohn
J Mov Disord. 2022;15(3):249-257.   Published online September 7, 2022
  • 3,132 View
  • 152 Download
  • 6 Web of Science
  • 7 Crossref
AbstractAbstract PDFSupplementary Material
To investigate whether there is a link between cognitive function and motor reserve (i.e., individual capacity to cope with nigrostriatal dopamine depletion) in patients with newly diagnosed Parkinson’s disease (PD).
A total of 163 patients with drug-naïve PD who underwent 18F-FP-CIT PET, brain MRI, and a detailed neuropsychological test were enrolled. We estimated individual motor reserve based on initial motor deficits and striatal dopamine depletion using a residual model. We performed correlation analyses between motor reserve estimates and cognitive composite scores. Diffusion connectometry analysis was performed to map the white matter fiber tracts, of which fractional anisotropy (FA) values were well correlated with motor reserve estimates. Additionally, Cox regression analysis was used to assess the effect of initial motor reserve on the risk of dementia conversion.
The motor reserve estimate was positively correlated with the composite score of the verbal memory function domain (γ = 0.246) and with the years of education (γ = 0.251). Connectometry analysis showed that FA values in the left fornix were positively correlated with the motor reserve estimate, while no fiber tracts were negatively correlated with the motor reserve estimate. Cox regression analysis demonstrated that higher motor reserve estimates tended to be associated with a lower risk of dementia conversion (hazard ratio, 0.781; 95% confidence interval, 0.576–1.058).
The present study demonstrated that the motor reserve estimate was well correlated with verbal memory function and with white matter integrity in the left fornix, suggesting a possible link between cognition and motor reserve in patients with PD.


Citations to this article as recorded by  
  • Hippocampal Perfusion Affects Motor and Cognitive Functions in Parkinson Disease: An Early Phase 18F‐FP‐CIT Positron Emission Tomography Study
    Min Young Chun, Seok Jong Chung, Su Hong Kim, Chan Wook Park, Seong Ho Jeong, Hye Sun Lee, Phil Hyu Lee, Young H. Sohn, Yong Jeong, Yun Joong Kim
    Annals of Neurology.2024; 95(2): 388.     CrossRef
  • Imaging Procedure and Clinical Studies of [18F]FP-CIT PET
    Changhwan Sung, Seung Jun Oh, Jae Seung Kim
    Nuclear Medicine and Molecular Imaging.2024; 58(4): 185.     CrossRef
  • Influence of cognitive reserve on cognitive and motor function in α-synucleinopathies: A systematic review and multilevel meta-analysis
    Isaac Saywell, Lauren Foreman, Brittany Child, Alexander L. Phillips-Hughes, Lyndsey Collins-Praino, Irina Baetu
    Neuroscience & Biobehavioral Reviews.2024; 161: 105672.     CrossRef
  • Structural underpinnings and long-term effects of resilience in Parkinson’s disease
    Verena Dzialas, Merle C. Hoenig, Stéphane Prange, Gérard N. Bischof, Alexander Drzezga, Thilo van Eimeren
    npj Parkinson's Disease.2024;[Epub]     CrossRef
  • Considering the response in addition to the challenge – a narrative review in appraisal of a motor reserve framework
    Daniel Zeller, Shawn Hiew, Thorsten Odorfer, Carine Nguemeni
    Aging.2024; 16(6): 5772.     CrossRef
  • Defining the concept of reserve in the motor domain: a systematic review
    Andreina Giustiniani, Angelo Quartarone
    Frontiers in Neuroscience.2024;[Epub]     CrossRef
  • Extra-Basal Ganglia Brain Structures Are Related to Motor Reserve in Parkinson’s Disease
    Jinyoung Youn, Ji Hye Won, Mansu Kim, Junmo Kwon, Seung Hwan Moon, Minkyeong Kim, Jong Hyun Ahn, Jun Kyu Mun, Hyunjin Park, Jin Whan Cho
    Journal of Parkinson's Disease.2023; 13(1): 39.     CrossRef

JMD : Journal of Movement Disorders Twitter