Clinical case studies and reporting are important to the discovery of new disorders and the advancement of medical sciences. Both clinicians and basic scientists play equally important roles leading to treatment discoveries for both cures and symptoms. In the field of movement disorders, exceptional observation of patients from clinicians is imperative, not just for phenomenology but also for the variable occurrences of these disorders, along with other signs and symptoms, throughout the day and the disease course. The Movement Disorders in Asia Task Force (TF) was formed to help enhance and promote collaboration and research on movement disorders within the region. As a start, the TF has reviewed the original studies of the movement disorders that were preliminarily described in the region. These include nine disorders that were first described in Asia: Segawa disease, PARK-Parkin, X-linked dystonia-parkinsonism, dentatorubral-pallidoluysian atrophy, Woodhouse-Sakati syndrome, benign adult familial myoclonic epilepsy, Kufor-Rakeb disease, tremulous dystonia associated with mutation of the calmodulin-binding transcription activator 2 gene, and paroxysmal kinesigenic dyskinesia. We hope that the information provided will honor the original researchers and help us learn and understand how earlier neurologists and basic scientists together discovered new disorders and made advances in the field, which impact us all to this day.
Citations
Citations to this article as recorded by
Genetic heterogeneity of early onset Parkinson disease: The dilemma of clinico-genetic correlation Roopa Rajan, Vikram V. Holla, Nitish Kamble, Ravi Yadav, Pramod Kumar Pal Parkinsonism & Related Disorders.2024; : 107146. CrossRef
Nongenetic movement disorders are common throughout the world. The movement disorders encountered may vary depending on the prevalence of certain disorders across various geographical regions. In this paper, we review historical and more common nongenetic movement disorders in Asia. The underlying causes of these movement disorders are diverse and include, among others, nutritional deficiencies, toxic and metabolic causes, and cultural Latah syndrome, contributed by geographical, economic, and cultural differences across Asia. The industrial revolution in Japan and Korea has led to diseases related to environmental toxin poisoning, such as Minamata disease and β-fluoroethyl acetate-associated cerebellar degeneration, respectively, while religious dietary restriction in the Indian subcontinent has led to infantile tremor syndrome related to vitamin B12 deficiency. In this review, we identify the salient features and key contributing factors in the development of these disorders.
Citations
Citations to this article as recorded by
Diabetic striatopathy and other acute onset de novo movement disorders in hyperglycemia Subhankar Chatterjee, Ritwik Ghosh, Payel Biswas, Shambaditya Das, Samya Sengupta, Souvik Dubey, Biman Kanti Ray, Alak Pandit, Julián Benito-León, Rana Bhattacharjee Diabetes & Metabolic Syndrome: Clinical Research & Reviews.2024; 18(3): 102997. CrossRef
Tremors in Infantile Tremor Syndrome Mimicking Epilepsia Partialis Continua Tonyot Gailson, Pradeep Kumar Gunasekaran, Arushi Gahlot Saini, Chaithanya Reddy Journal of Movement Disorders.2024; 17(3): 351. CrossRef
Perry disease is a hereditary neurodegenerative disease with autosomal dominant inheritance. It is characterized by parkinsonism, psychiatric symptoms, unexpected weight loss, central hypoventilation, and transactive-response DNA-binding protein of 43kD (TDP-43) aggregation in the brain. In 2009, Perry disease was found to be caused by dynactin I gene (DCTN1), which encodes dynactin subunit p150 on chromosome 2p, in patients with the disease. The dynactin complex is a motor protein that is associated with axonal transport. Presently, at least 8 mutations and 22 families have been reported; other than the “classic” syndrome, distinct phenotypes are recognized. The neuropathology of Perry disease reveals severe degeneration in the substantia nigra and TDP-43 inclusions in the basal ganglia and brain stem. How dysfunction of the dynactin molecule is related to TDP-43 pathology in Perry disease is important to elucidate the pathological mechanism and develop new treatment.
Citations
Citations to this article as recorded by
Perry Disease: Bench to Bedside Circulation and a Team Approach Takayasu Mishima, Junichi Yuasa-Kawada, Shinsuke Fujioka, Yoshio Tsuboi Biomedicines.2024; 12(1): 113. CrossRef
Dysregulation of stress granule dynamics by DCTN1 deficiency exacerbates TDP-43 pathology in Drosophila models of ALS/FTD Tetsuhiro Ueda, Toshihide Takeuchi, Nobuhiro Fujikake, Mari Suzuki, Eiko N. Minakawa, Morio Ueyama, Yuzo Fujino, Nobuyuki Kimura, Seiichi Nagano, Akio Yokoseki, Osamu Onodera, Hideki Mochizuki, Toshiki Mizuno, Keiji Wada, Yoshitaka Nagai Acta Neuropathologica Communications.2024;[Epub] CrossRef
First family with Perry syndrome from Mexico Leonardo Flores‑Lagunes, Luis Del Pozo‑Yauner, Karol Carrillo‑Sánchez, Carolina Molina‑Garay, Marco Jiménez‑Olivares, Joaquin Garcia‑Solorio, Ulises Rodríguez Corona, Guillermo Herrera, Edgar Ricardez‑Marcial, Carmen Alaez‑verson Biomedical Reports.2024;[Epub] CrossRef
Perry Disease: Current Outlook and Advances in Drug Discovery Approach to Symptomatic Treatment Zbigniew Gajda, Magdalena Hawrylak, Jadwiga Handzlik, Kamil J. Kuder International Journal of Molecular Sciences.2024; 25(19): 10652. CrossRef
Extubation failure due to atypical parkinsonism with negligible motor and variable non-motor symptoms associated with a variant of DCTN1 Hidetada Yamada, Shuichiro Neshige, Hiroyuki Morino, Hirofumi Maruyama Internal and Emergency Medicine.2023; 18(1): 329. CrossRef
Deficiency of Perry syndrome-associated p150Glued in midbrain dopaminergic neurons leads to progressive neurodegeneration and endoplasmic reticulum abnormalities Jia Yu, Xuan Yang, Jiayin Zheng, Carmelo Sgobio, Lixin Sun, Huaibin Cai npj Parkinson's Disease.2023;[Epub] CrossRef
Pathogenic Aspects and Therapeutic Avenues of Autophagy in Parkinson’s Disease Rémi Kinet, Benjamin Dehay Cells.2023; 12(4): 621. CrossRef
The genetic spectrum of a cohort of patients clinically diagnosed as Parkinson’s disease in mainland China Yi-Min Sun, Xin-Yue Zhou, Xiao-Niu Liang, Jin-Ran Lin, Yi-Dan Xu, Chen Chen, Si-Di Wei, Qi-Si Chen, Feng-Tao Liu, Jue Zhao, Yi-Lin Tang, Bo Shen, Lin-Hua Gan, Boxun Lu, Zheng-Tong Ding, Yu An, Jian-Jun Wu, Jian Wang npj Parkinson's Disease.2023;[Epub] CrossRef
Perry syndrome: Novel DCTN1 mutation in a large kindred and first observation of prodromal disease Jarosław Dulski, Shunsuke Koga, Mercedes Prudencio, Philip W. Tipton, Shan Ali, Audrey J. Strongosky, Juliana H. Rose, Zoe A. Parrales, Judith A. Dunmore, Karen Jansen-West, Leonard Petrucelli, Dennis W. Dickson, Zbigniew K. Wszolek Parkinsonism & Related Disorders.2023; 112: 105481. CrossRef
Perry Disease: Expanding the Genetic Basis Jarosław Dulski, Shunsuke Koga, Paweł P. Liberski, Emilia J. Sitek, Ankur A. Butala, Jarosław Sławek, Dennis W. Dickson, Zbigniew K. Wszolek Movement Disorders Clinical Practice.2023; 10(7): 1136. CrossRef
PSP-Richardson syndrome mimics: An overview and pragmatic approach J. Necpál, M. Borsek, B. Jeleňová Revue Neurologique.2023;[Epub] CrossRef
Monogenic Parkinson’s Disease: Genotype, Phenotype, Pathophysiology, and Genetic Testing Fangzhi Jia, Avi Fellner, Kishore Raj Kumar Genes.2022; 13(3): 471. CrossRef
Perry disease in an Argentine family due to the DCTN1 p.G67D variant Emanuel Silva, Tatiana Itzcovich, Matías Niikado, Alejandro Caride, Elmer Fernández, Juan Carlos Vázquez, Leonardo Romorini, Mariela Marazita, Gustavo Sevlever, Horacio Martinetto, Ezequiel I. Surace Parkinsonism & Related Disorders.2022; 97: 63. CrossRef
Clinical, pathological and genetic characteristics of Perry disease—new cases and literature review Jarosław Dulski, Catalina Cerquera‐Cleves, Lukasz Milanowski, Alexa Kidd, Emilia J. Sitek, Audrey Strongosky, Ana María Vanegas Monroy, Dennis W. Dickson, Owen A. Ross, Jolanta Pentela‐Nowicka, Jarosław Sławek, Zbigniew K. Wszolek European Journal of Neurology.2021; 28(12): 4010. CrossRef
Behavioral profile in a Dctn1G71A knock-in mouse model of Perry disease Manami Deshimaru, Takayasu Mishima, Takuya Watanabe, Kaori Kubota, Mana Hosoi, Mariko Kinoshita-Kawada, Junichi Yuasa-Kawada, Maiko Ikeda, Masayoshi Mori, Yusuke Murata, Takaya Abe, Munechika Enjoji, Hiroshi Kiyonari, Shohta Kodama, Shinsuke Fujioka, Kats Neuroscience Letters.2021; 764: 136234. CrossRef