Skip Navigation
Skip to contents

JMD : Journal of Movement Disorders

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
4 "Pantothenate kinase-associated neurodegeneration"
Filter
Filter
Article category
Keywords
Publication year
Authors
Funded articles
Original Article
Long-Term Outcomes of Deep Brain Stimulation in Pantothenate Kinase-Associated Neurodegeneration-Related Dystonia
Kyung Ah Woo, Han-Joon Kim, Seung-Ho Jeon, Hye Ran Park, Kye Won Park, Seung Hyun Lee, Sun Ju Chung, Jong-Hee Chae, Sun Ha Paek, Beomseok Jeon
J Mov Disord. 2022;15(3):241-248.   Published online July 26, 2022
DOI: https://doi.org/10.14802/jmd.22002
  • 2,859 View
  • 172 Download
  • 2 Web of Science
  • 2 Crossref
AbstractAbstract PDFSupplementary Material
Objective
To investigate the long-term clinical outcomes of pallidal deep brain stimulation (GPi-DBS) in patients with pantothenate kinase-associated neurodegeneration (PKAN).
Methods
We reviewed the records of patients with genetically confirmed PKAN who received bilateral GPi-DBS for refractory dystonia and were clinically followed up for at least 2 years postoperatively at two centers in Korea. Pre- and postoperative Burke– Fahn–Marsden Dystonia Rating Scale motor subscale (BFMDRS-M) scores, disability subscale (BFMDRS-D) scores, and qualitative clinical information were prospectively collected. Descriptive analysis was performed for BFMDRS-M scores, BFMDRSD scores, and the orofacial, axial, and limb subscores of the BFMDRS-M at 6–12, 24–36, and 60–72 months postoperatively.
Results
Five classic-type, four atypical-type, and one unknown-type PKAN cases were identified. The mean preoperative BFMDRS-M score was 92.1 for the classic type and 38.5 for the atypical or unknown type, with a mean BFMDRS follow-up of 50.7 months and a clinical follow-up of 69.0 months. The mean improvements in BFMDRS-M score were 11.3%, 41.3%, and 30.5% at 6–12, 24–36, and 60–72 months, respectively. In four patients with full regular evaluations until 60–72 months, improvements in the orofacial, axial, and limb subscores persisted, but the disability scores worsened from 24–36 months post-operation compared to the baseline, mainly owing to the aggravation of eating and feeding disabilities.
Conclusion
The benefits of GPi-DBS on dystonia may persist for more than 5 years in PKAN. The effects on patients’ subjective disability may have a shorter duration despite improvements in dystonia owing to the complex manifestations of PKAN.

Citations

Citations to this article as recorded by  
  • Deep Brain Stimulation for Refractory Status Dystonicus in Children: Multicenter Case Series and Systematic Review
    Lindsey M. Vogt, Han Yan, Brendan Santyr, Sara Breitbart, Melanie Anderson, Jürgen Germann, Karlo J. Lizarraga, Angela L. Hewitt, Alfonso Fasano, George M. Ibrahim, Carolina Gorodetsky
    Annals of Neurology.2024; 95(1): 156.     CrossRef
  • Surgical treatment of movement disorders in neurometabolic conditions
    Alonso Zea Vera, Andrea L. Gropman
    Frontiers in Neurology.2023;[Epub]     CrossRef
Brief communication
Changes in Cerebral Gray and White Matter in Patients with Pantothenate Kinase-Associated Neurodegeneration: A Long-Term Magnetic Resonance Imaging Follow-Up Study
Pedro Roa-Sanchez, Pamela Bido, Jairo Oviedo, Hans-Jürgen Huppertz, Herwin Speckter, Peter Stoeter
J Mov Disord. 2021;14(2):148-152.   Published online May 26, 2021
DOI: https://doi.org/10.14802/jmd.20102
  • 3,735 View
  • 72 Download
  • 3 Web of Science
  • 3 Crossref
AbstractAbstract PDFSupplementary Material
Objective
To determine the volume changes in gray and white matter during a long-term follow-up in patients suffering from pantothenate kinase-associated neurodegeneration (PKAN).
Methods
Magnetic resonance imaging was repeated in 13 patients and 14 age-matched controls after a mean interval of more than 7 years. T1-weighted sequences were evaluated by fully automated atlas-based volumetry, compared between groups and correlated with disease progression.
Results
The patients did not show generalized cerebral atrophy but did show a significantly faster volume reduction in the globus pallidus during follow-up (between -0.96% and -1.02% per year, p < 0.05 adjusted for false discovery rate) than controls, which was significantly related to the progression in their dystonia scores (p = 0.032).
Conclusion
The volume loss in the globus pallidus over time—together with the accumulation of iron known as the “tiger’s eye”—supports the pathophysiologic concept of this nucleus as a center of inhibition and its severe malfunction in PKAN.

Citations

Citations to this article as recorded by  
  • Pantothenate Kinase Activation Restores Brain Coenzyme A in a Mouse Model of Pantothenate Kinase-Associated Neurodegeneration
    Chitra Subramanian, Matthew W. Frank, Rajaa Sukhun, Christopher E. Henry, Anna Wade, Mallory E. Harden, Satish Rao, Rajendra Tangallapally, Mi-Kyung Yun, Stephen W. White, Richard E. Lee, Uma Sinha, Charles O. Rock, Suzanne Jackowski
    Journal of Pharmacology and Experimental Therapeutics.2024; 388(1): 171.     CrossRef
  • Cerebral and cerebellar white matter tract alterations in patients with Pantothenate Kinase-Associated Neurodegeneration (PKAN)
    Diones Rivera, Pedro Roa-Sanchez, Pamela Bidó, Herwin Speckter, Jairo Oviedo, Peter Stoeter
    Parkinsonism & Related Disorders.2022; 98: 1.     CrossRef
  • Long-Term Neuroradiological and Clinical Evaluation of NBIA Patients Treated with a Deferiprone Based Iron-Chelation Therapy
    Nicola Romano, Giammarco Baiardi, Valeria Maria Pinto, Sabrina Quintino, Barbara Gianesin, Riccardo Sasso, Andrea Diociasi, Francesca Mattioli, Roberta Marchese, Giovanni Abbruzzese, Antonio Castaldi, Gian Luca Forni
    Journal of Clinical Medicine.2022; 11(15): 4524.     CrossRef
Original Article
Clinical Heterogeneity of Atypical Pantothenate Kinase-Associated Neurodegeneration in Koreans
Jae-Hyeok Lee, Jongkyu Park, Ho-Sung Ryu, Hyeyoung Park, Young Eun Kim, Jin Yong Hong, Sang Ook Nam, Young-Hee Sung, Seung-Hwan Lee, Jee-Young Lee, Myung Jun Lee, Tae-Hyoung Kim, Chul Hyoung Lyoo, Sun Ju Chung, Seong Beom Koh, Phil Hyu Lee, Jin Whan Cho, Mee Young Park, Yun Joong Kim, Young H. Sohn, Beom Seok Jeon, Myung Sik Lee
J Mov Disord. 2016;9(1):20-27.   Published online January 25, 2016
DOI: https://doi.org/10.14802/jmd.15058
  • 21,345 View
  • 226 Download
  • 20 Web of Science
  • 16 Crossref
AbstractAbstract PDFSupplementary Material
Objective
Neurodegeneration with brain iron accumulation (NBIA) represents a group of inherited movement disorders characterized by iron accumulation in the basal ganglia. Recent advances have included the identification of new causative genes and highlighted the wide phenotypic variation between and within the specific NBIA subtypes. This study aimed to investigate the current status of NBIA in Korea.
Methods
We collected genetically confirmed NBIA patients from twelve nationwide referral hospitals and from a review of the literature. We conducted a study to describe the phenotypic and genotypic characteristics of Korean adults with atypical pantothenate kinase-associated neurodegeneration (PKAN).
Results
Four subtypes of NBIA including PKAN (n = 30), PLA2G6-related neurodegeneration (n = 2), beta-propeller protein-associated neurodegeneration (n = 1), and aceruloplasminemia (n = 1) have been identified in the Korean population. The clinical features of fifteen adults with atypical PKAN included early focal limb dystonia, parkinsonism-predominant feature, oromandibular dystonia, and isolated freezing of gait (FOG). Patients with a higher age of onset tended to present with parkinsonism and FOG. The p.R440P and p.D378G mutations are two major mutations that represent approximately 50% of the mutated alleles. Although there were no specific genotype-phenotype correlations, most patients carrying the p.D378G mutation had a late-onset, atypical form of PKAN.
Conclusions
We found considerable phenotypic heterogeneity in Korean adults with atypical PKAN. The age of onset may influence the presentation of extrapyramidal symptoms.

Citations

Citations to this article as recorded by  
  • Typical pantothenate kinase-associated neurodegeneration caused by compound heterozygous mutations in PANK2 gene in a Chinese patient: a case report and literature review
    Yilun Tao, Chen Zhao, Dong Han, Yiju Wei, Lihong Wang, Wenxia Song, Xiaoze Li
    Frontiers in Neurology.2023;[Epub]     CrossRef
  • The first Vietnamese patient who presented late onset of pantothenate kinase-associated neurodegeneration diagnosed by whole exome sequencing: A case report
    Van Khanh Tran, Chi Dung Vu, Hai Anh Tran, Nguyen Thi Kim Lien, Nguyen Van Tung, Nguyen Ngoc Lan, Huy Thinh Tran, Nguyen Huy Hoang
    Medicine.2023; 102(43): e34853.     CrossRef
  • Genetic mutation spectrum of pantothenate kinase-associated neurodegeneration expanded by breakpoint sequencing in pantothenate kinase 2 gene
    Dahae Yang, Sanghyun Cho, Sung Im Cho, Manjin Kim, Moon-Woo Seong, Sung Sup Park
    Orphanet Journal of Rare Diseases.2022;[Epub]     CrossRef
  • Long-Term Outcomes of Deep Brain Stimulation in Pantothenate Kinase-Associated Neurodegeneration-Related Dystonia
    Kyung Ah Woo, Han-Joon Kim, Seung-Ho Jeon, Hye Ran Park, Kye Won Park, Seung Hyun Lee, Sun Ju Chung, Jong-Hee Chae, Sun Ha Paek, Beomseok Jeon
    Journal of Movement Disorders.2022; 15(3): 241.     CrossRef
  • Psychiatric symptoms in an adolescent reveal a novel compound heterozygous mutation of the PANK2 gene in the atypical PKAN syndrome
    Luz María González Huerta, Sorina Gómez González, Jaime Toral López
    Psychiatric Genetics.2021; 31(3): 95.     CrossRef
  • Rational Design of Novel Therapies for Pantothenate Kinase–Associated Neurodegeneration
    Nivedita Thakur, Thomas Klopstock, Suzanne Jackowski, Enej Kuscer, Fernando Tricta, Aleksandar Videnovic, Hyder A. Jinnah
    Movement Disorders.2021; 36(9): 2005.     CrossRef
  • Atypical Pantothenate Kinase-Associated Neurodegeneration with variable phenotypes in an Egyptian family
    Ali S. Shalash, Thomas W. Rösler, Ibrahim Y. Abdelrahman, Hatem S. Abulmakarem, Stefanie H. Müller, Franziska Hopfner, Gregor Kuhlenbäumer, Günter U. Höglinger, Mohamed Salama
    Heliyon.2021; : e07469.     CrossRef
  • Treatment Responsiveness of Parkinsonism in Atypical Pantothenate Kinase‐Associated Neurodegeneration
    Jeanne Feuerstein, Caroline Olvera, Michelle Fullard
    Movement Disorders Clinical Practice.2020;[Epub]     CrossRef
  • Diagnostic and clinical experience of patients with pantothenate kinase-associated neurodegeneration
    Randall D. Marshall, Abigail Collins, Maria L. Escolar, H. A. Jinnah, Thomas Klopstock, Michael C. Kruer, Aleksandar Videnovic, Amy Robichaux-Viehoever, Colleen Burns, Laura L. Swett, Dennis A. Revicki, Randall H. Bender, William R. Lenderking
    Orphanet Journal of Rare Diseases.2019;[Epub]     CrossRef
  • Intrafamilial variability and clinical heterogeneity in a family with PLA2G6-associated neurodegeneration
    Jong Kyu Park, Jinyoung Youn, Jin Whan Cho
    Precision and Future Medicine.2019; 3(3): 135.     CrossRef
  • On the complexity of clinical and molecular bases of neurodegeneration with brain iron accumulation
    C. Tello, A. Darling, V. Lupo, B. Pérez‐Dueñas, C. Espinós
    Clinical Genetics.2018; 93(4): 731.     CrossRef
  • Looking Deep into the Eye-of-the-Tiger in Pantothenate Kinase–Associated Neurodegeneration
    J.-H. Lee, A. Gregory, P. Hogarth, C. Rogers, S.J. Hayflick
    American Journal of Neuroradiology.2018; 39(3): 583.     CrossRef
  • Parkinson’s Disease and Metal Storage Disorders: A Systematic Review
    Edward Botsford, Jayan George, Ellen Buckley
    Brain Sciences.2018; 8(11): 194.     CrossRef
  • Atypical pantothenate kinase-associated neurodegeneration: Clinical description of two brothers and a review of the literature
    S. Mahoui, A. Benhaddadi, W. Ameur El Khedoud, M. Abada Bendib, M. Chaouch
    Revue Neurologique.2017; 173(10): 658.     CrossRef
  • Clinical rating scale for pantothenate kinase‐associated neurodegeneration: A pilot study
    Alejandra Darling, Cristina Tello, María Josep Martí, Cristina Garrido, Sergio Aguilera‐Albesa, Miguel Tomás Vila, Itziar Gastón, Marcos Madruga, Luis González Gutiérrez, Julio Ramos Lizana, Montserrat Pujol, Tania Gavilán Iglesias, Kylee Tustin, Jean Pie
    Movement Disorders.2017; 32(11): 1620.     CrossRef
  • Missions of <italic>Journal of Movement Disorders</italic>
    Yun Joong Kim
    Journal of Movement Disorders.2016; 9(1): 1.     CrossRef
Case Report
Novel Compound Heterozygous Mutations in the Pantothenate Kinase 2 Gene in a Korean Patient with Atypical Pantothenate Kinase Associated Neurodegeneration
Sung-Hyouk Kim, Young-Hee Sung, Kee-Hyung Park, Yeung-Bae Lee, Hyeon-Mi Park, Dong Jin Shin, Gu-Hwan Kim
J Mov Disord. 2009;2(1):45-47.
DOI: https://doi.org/10.14802/jmd.09012
  • 21,529 View
  • 80 Download
  • 2 Crossref
AbstractAbstract PDF

Pantothenate kinase-associated neurodegeneration (PKAN) is an autosomal recessive disorder that is characterized by mutations in the pantothenate kinase 2 gene (PANK2) and typical magnetic resonance imaging findings. We report a case of atypical PKAN presenting with generalized dystonia. Our patient had compound heterozygous mutations in the PANK2 gene, including mutation in exon 3 (p.D268G) and exon 4 (p.R330P). To our knowledge, this patient is the first to have the p.R330P mutation and the second to have the p.D268G mutation.

Citations

Citations to this article as recorded by  
  • Atypical pantothenate kinase-associated neurodegeneration: Clinical description of two brothers and a review of the literature
    S. Mahoui, A. Benhaddadi, W. Ameur El Khedoud, M. Abada Bendib, M. Chaouch
    Revue Neurologique.2017; 173(10): 658.     CrossRef
  • Clinical Heterogeneity of Atypical Pantothenate Kinase-Associated Neurodegeneration in Koreans
    Jae-Hyeok Lee, Jongkyu Park, Ho-Sung Ryu, Hyeyoung Park, Young Eun Kim, Jin Yong Hong, Sang Ook Nam, Young-Hee Sung, Seung-Hwan Lee, Jee-Young Lee, Myung Jun Lee, Tae-Hyoung Kim, Chul Hyoung Lyoo, Sun Ju Chung, Seong Beom Koh, Phil Hyu Lee, Jin Whan Cho,
    Journal of Movement Disorders.2016; 9(1): 20.     CrossRef

JMD : Journal of Movement Disorders